

PRESENTATION ON DSI HIGH ANGLE CONVEYOR

BY SHYAMAL KUMAR BAG E-mail: shyamalkumarbag@gmail.com

The presentation has been created by Shyamal Kumar Bag and no slide can be copied or reproduced without permission of the author.

MATERIALS HANDLING & ENGINEERING SPECIALISTS

A legacy of innovation.

MATERIALS HANDLING AND ENGINEERING SPECIALISTS

- Long Overland, High Lift, and High Capacity Conveyors - including horizontally curving systems, TBM trailing conveyors
- High Angle Conveyors world's foremost authority
- High Tech Transfers association with M&J/WEBA
- Plant Conveyors
- Heavy Belt Feeders
- **<u>Booster Drives</u>** able to convey great lengths with modest belt strength

CONCEPT OF BOOSTER CONVEYOR

Belt tension diagram for Intermediate drives

BOOSTER CONVEYOR

Maximum belt tension vs. number of drives

LINEAR / BOOSTER CONVEYOR LINEAR CONVEYORS

THIS BOOSTER CONVEYOR IS **A PART OF COMPLETE** SYSTEM IN A POTASH MINE. THE LENGTH OF THE **CONVEYOR IS 1740 M & LIFT** 284 M. INITIAL OUTPUT WAS 500 TPH RISING TO 1000 TPH. THE 1050 KW, 800 MM WIDE **CONVEYOR USES AN** INTERMEDIATE GRADE FABRIC BELT & 150 kW TRANSMISSION UNITS **IDENTICAL TO THOSE ON ALL** THE CONVEYORS IN THE SYSTEM.

The linear drive system applies power at one or more points along the conveyor and at the head drive and has several benefits:-

- lower maximum belt tension
- belt of lower tensile strength
- reduced weight of belt
- lower installed power
- increased length of single flight conveyor

- elimination of transfer points
- progressive increase of length, power and load with the same belting
- modular driving units with benefit of standardisation and reduced physical size of components
- improved man-riding facilities
- lower capital cost

The reduction in maximum belt tension is demonstrated in the tension diagram for a conveyor with a conventional head drive and for the same duty with a linear system.

DSI ExConTec

Complete Power/Tension Analysis Program

	Discretion	ineer:				
I		Ky Adjust:	0.83	Input	0.83	Default
		Kx Adjust:	1.5	Input	1.5	Default
	RUN	Term. Adj.:		Input	1	Default
	Non					
		T-U Tension	8400	lbs	AT NODE	<u> 1</u>

Discretionary

Factors

OUR RANGE OF SERVICES

- Technical and economic studies and evaluations
- New Systems
- Upgrade of existing systems
- Plant modifications and field advisory assistance

2.8 KILOMETER, TWO-WAY OVERLAND CONVEYOR

2.8 kilometer overland conveyor for an Eastern USA Cement Company

May be the world's most advanced single flight conveyor system by virtue of the number of simultaneous advanced features, including:

- Two way conveying, carrying crushed limestone, on the upper belt strand, and clinker on the return belt strand
- Horizontally and vertically curving path featuring 9 horizontal curves, each with compound vertical curves
- Belt turnovers, to utilize the thicker belt cover at the carrying side in either travel direction
- Complete speed control with AC motors by variable frequency drives
- Tripper type "Smart" booster (intermediate) drive at the upper belt strand
- Tripper type "Natural" booster drive at the return strand
- Multiple discharge points along the return strand

ELEVATION VIEW (ALONG THE DEVELOPED BELT PATH)

2.8 KILOMETER, TWO-WAY OVERLAND CONVEYOR

DSI ExConTec Analysis quickly reveals the tension and power distribution due to various material flow conditions

SANDWICH BELT HIGH ANGLE CONVEYORS

- History
- The Technology
- Installations

ORE CONVEYING PLAN

Design Parameters

Material	Copper, Gold Ore	
Bulk Density	1.75 t/cu-m	
Size	250mm minus	
Design Rate:	1870 t/h	

Majdanpek IPCC System, Serbia

Material - Copper Ore - Density - 2.08 t/cu-m (130 PCF) - Size - To 250 mm (10") minus Conveying Rate - 4000 t/h (4409 STPH) Conveying Angle - 35.5 degrees Belt Width - 2000 mm (78.7") Belt Speed - 2.85 m/s (561 FPM) Lift - 93,500 mm (307') Drives - - Top Belt - 450 kW (600 HP) - Bottom Belt - 2x450=900 kW (1200 HP)	Sandwich Conveyor for Copper Mine, Eastern Europe			
	Material - Density - Size Conveying Rate Conveying Angle Belt Width Belt Speed Lift Drives - Top Belt - Bottom Belt	 Copper Ore 2.08 t/cu-m (130 PCF) To 250 mm (10") minus 4000 t/h (4409 STPH) 35.5 degrees 2000 mm (78.7") 2.85 m/s (561 FPM) 93,500 mm (307') 450 kW (600 HP) 2x450=900 kW (1200 HP) 		

COMPLETE SYSTEM

Main High Angle Conveyor

SANDWICH BELT PRINCIPLE

Where: $\mu = \mu_m$ or $\mu = \mu_b$, whichever is the smaller **Hugging pressure N**_m:

$$Nm \ge \frac{Wm}{2} \left(\frac{\sin \alpha}{\mu} - \cos \alpha\right)$$

S.K.BAG

 α = conveying angle

 μ_m = coefficient of friction for bulk material on bulk material

 μ_b = coefficient of friction for bulk material on conveyor belt

 μ_e = coefficient of friction at the interface of the top and bottom belts

 W_m = lineal weight of bulk material

N = normal lineal hugging load exerted by the cover belt

Nm = that portion of N which bears directly on the conveyed material

Ne = that portion of N which bears directly on the edges of the bottom belt

SANDWITCH BELT CONVEYOR

MODULAR SECTION OF SNAKE SANDWICH CONVEYOR

TAKE-UP AND SAFETY DEVICES IN HIGH ANGLE CONVEYORS

LIST OF DETECTORS AND SWITCHES PROVIDED IN DSI HIGH ANGLE CONVEYOR SYSTEM

ITEM	DESCRIPTION	FUNCTION WHEN ACTUATED	
1	MISALIGNMENT DETECTOR	TRIP BELT IS SERIOIUSLY MISALIGNED	
2	UNDER SPEED SWITCH	TRIP DRIVE AND FEED CONVEYOR	
3	BLOCKED CHUTE DETECTOR	TRIP DRIVE AND RECEIVING CONVEYOR	
4	PULL WIRE AND SWITCH	TRIP DRIVE AND FEED CONVEYOR	
5	EMERGENCY STOP	TRIP DRIVE AND FEED CONVEYOR	
6	RIP DETECTOR	TRIP DRIVE AND FEED CONVEYOR	

VISIT OUR WEBSITE FOR THE INSTALLATIONS OF VARIOUS TYPES AND CAPACITY

https://dossantosintl.com/installations-i/

PROJECTS FOR READY REFERNCE

VIDEO LINKS OF DSI SANDWICH CONVEYOR

What is DSI Sandwich Belt High Angle Conveyor?

https://youtu.be/COjQeEGfwZY

DSI Sandwich Belt High Angle Conveyor for Paris Metro Tunnelling Project

https://youtu.be/IBMzYHoPz7w

DSI Snake Ship Loader

https://youtu.be/AOtzUInP6cg

Additional Information

Categories: All industries, Energy & Power, Recycling Material: Natural gypsum Density: 0.4 t/cu-m | 75 PCF Size: 51 mm | 3.0 in Conveying rate: 122 t/h | 135 STPH Conveying angle: 85 deg Belt width: 762 mm | 30 in Belt speed: 2.03 m/s | 400 FPM Lift: 23300 mm | 76.0 ft Length: 61500 mm | 202.0 ft Top drive power: 19.0 kW | 25.0 HP Bottom drive power: 19.0 kW | 25.0 HP

DS116 – SINGAPORE AIRPORT TUNNELING PROJECT

Additional Information

Categories: All industries,Tunneling Material: Tunnel muck Density: 1.8 t/cu-m | 114 PCF Size: 150 mm | 6.0 in Conveying rate: 800 t/h | 882 STPH Conveying angle: 45 deg Belt width: 1200 mm | 47 in Belt speed: 2.00 m/s | 394 FPM Lift: 32783 mm | 108.0 ft Length: 90142 mm | 296.0 ft Top drive power: 75.0 kW | 100.0 HP Bottom drive power: 75.0 kW | 100.0 HP

<u>DS108 – PARIS METRO</u> <u>TUNNELING PROJECT</u>

Material: Tunnel muck Density: 1.6 t/cu-m | 100 PCF Size: 150 mm | 5.9 in Conveying rate: 800 t/h | 882 STPH Conveying angle: 90 deg Belt width: 1400 mm | 55 in Belt speed: 3.00 m/s | 591 FPM Lift: 24647 mm | 80.9 ft Length: 33521 mm | 110.0 ft Top drive power: 75.0 kW | 101.0 HP

DS093 – CONTINENTAL CANADA FOR DOFASCO STEEL PROJECT ALLOYS

Material: Various Density: 4.2 t/cu-m | 260 PCF Size: 75 mm | 3.0 in Conveying rate: 188 t/h | 200 STPH Conveying angle: 70 deg Belt width: 914 mm | 36 in Belt speed: 1.02 m/s | 207 FPM Lift: 35235 mm | 115.6 ft Length: 48768 mm | 160.0 ft Top drive power: 18.6 kW | 25.0 HP Bottom drive power: 18.6 kW | 25.0 HP

<u>DS097 – CORTEX RESOURCES FOR</u> <u>SHIPLOADER PROJECT</u>

Material: Titanium Ore Density: 2.4 t/cu-m | 150 PCF Size: N/A Conveying rate: 1000 t/h | 1102 STPH Conveying angle: 50 deg Belt width: 1200 mm | 47 in Belt speed: 2.00 m/s | 394 FPM Lift: 21805 mm | 71.5 ft Length: 56656 mm | 185.9 ft Top drive power: 55.0 kW | 74.0 HP Bottom drive power: 55.0 kW | 74.0 HP

<u>DS098 – DURO FELGUERA FOR</u> <u>REPSOL REFINERY PROJECT</u>

Material: Green Petroleum Coke Density: 0.7 t/cu-m | 45 PCF Size: 80 mm | 3.1 in Conveying rate: 475 t/h | 524 STPH Conveying angle: 90 deg Belt width: 1400 mm | 55 in Belt speed: 3.50 m/s | 689 FPM Lift: 21155 mm | 69.4 ft Length: 32266 mm | 105.2 ft Top drive power: 45.0 kW | 60.0 HP Bottom drive power: 45.0 kW | 60.0 HP

DSI SNAKE SHIP LOADER

THERE CAN BE FOUR TYPES OF APPLICATIONS OF DSI HIGH ANGLE CONVEYOR AS FOLLOWS

- OPENCAST MINE
- UNDERGROUND MINE
- DOWNHILL CONVEYOR
- IN CHP FOR LOADING OF SILO

HIGH ANGLE CONVEYOR IN OPENCAST MINE
DSI HIGH ANGLE CONVEYOR IN SIDE WALL

HIGH ANGLE CONVEYOR ALONG HIGH WALL/SIDE WALL IN OPENCAST

HAC APPLICATION IN INPIT MINE APPLICATION

<u>SHIFTABLE HIGH ANGLE</u> <u>CONVEYOR – UHAC 3 BENCH, 1</u> <u>BENCH OPERATION</u>

UHAC -Vital Link for IPCC System Western Australia

PROPOSALS BY CMPDI

HIGH ANGLE CONVEYOR IN 13 YEAR STAGE PLAN AT KOTRE BASANTPUR

HIGH ANGLE CONVEYOR IN THE FINAL YEAR PLAN – KOTRE BASANTPUR

HIGH ANGLE CONVEYOR AT SIARMAL PROJECT (50 MTPA CAPACITY)

Application of High Angle Conveyor in Deep Opencast Coal Mine (A Case Study) for 15 mtpa non-CIL mine by CMPDI

Application of Steep Angle Conveyor in Deep Opencast Coal Mine (A Case Study)

Devendra Pratap Singh Chief Manager (Mining), OC Division, CMPDI, Ranchi, 834031, India. singh.dp@coalindia.in

Abstract - In India, over 90% of the total coal production is achieved through opencast mining which requires huge quantity of OB removal and mining of coal from the quarry and subsequent transport to the surface. We know that the transport cost is one of the major components in the total cost of production and as the depth of mine increases, along with quantity of material to be transported increases the transport cost rises exponentially. Thus the economics of the mine greatly depends on the economics of the transport system used. Moreover, there is huge inflationary pressure with the fuel costs on the rise.

With the increase in depth of opencast coal mines and for steep quarry batter slope, Steep Angle Conveyor is a solution for transporting coal from quarry floor to surface with better economy and productivity. It is also an eco-friendly, trafficfriendly and space & energy saving solution.

Due to high initial depth and steep quarry batter slope, it is difficult to install conventional conveyor in one Non-CIL opencast project. Therefore, it has been decided for implementation of Steep Angle Conveyor. Economic analysis of Steep Angle Conveyor system vs Dumper system reflects that the capital requirement & cost of production per tonne for Steep Angle Conveyors along with in-pit conveyors and requirement of 60T coal body dumpers have reduced.

Keywords: Steep Angle Conveyor

I. INTRODUCTION

At present, there are two main alternatives proposed for the transport system, e.g. (i) truck system and (ii) conventional belt conveyor system. In Indian context, truck based transport system has been a favourite tool for the transportation of OB and coal. Asit Kumar Roy Chief Manager (Excv.), OC Division, CMPDI, Ranchi, 834031, India. asit.roy@coalindia.in

However, there is an increasing pressure to restrict the movement of Trucks from environmental point of view, as outlined while issuing Environmental Clearance by MOEF.

Conventional belt conveyors offer a most economical method for transporting bulk materials at recommended inclination angles up to 14 degrees for most common materials. Internal friction development and the induced dynamics of the moving conveyor belt, limit the conveying angle. Conveying angles beyond the angle of internal friction can be achieved by a cover belt which, when pressed against the material, will create a huggingaction to prevent sliding at the contact surface.

Sandwich Belt Conveyors are so named due to the manner in which the material is 'Sandwiched' between two belts before it is inclined at angles up to 70 degrees. Material is 'hugged' by the belts throughout the inclined section to ensure that it does not slide back down the incline, even if the conveyor trips.

A Sandwich Belt Conveyor (Steep Angle Conveyor) consists of two endless belt conveyors that share a common load carrying path. The top and bottom belts are independently driven and tensioned. Along the carrying path, the top and bottom belts are alternately supported against closely spaced troughing idlers. Radial pressure due to belt tension and the curving profile continuously hugs the material that is sandwiched between the two belts. Internal friction is developed and bulk material can be conveyed at any high angle up to 70 degrees or even more.

894173/2021/O/o HEAD OF OC DIVISION, CMPDI HQ

installed at one suitable position and modules can be added to compensate for the depth.

II. OBJECTIVE

The objective of implementation of Steep Angle Conveying system in conjunction with Surface Miner/In-pit crushing in Indian geo-mining condition is to make coal transportation in opencast coal mines more economic, highly productive, eco-friendly, traffic-friendly and space & energy saving.

III. FACTORS GOVERNING STEEP ANGLE CONVEYOR STRUCTURE

Following are major factors governing a Steep Angle Conveyor structure for conveying material in a mine:

- Whether the dip of the seam permits internal dumping
- Rate of advance of coal face and internal dump
- Rate of deepening the pit
- Whether a dump truck can pass underneath
- Ease of maintenance in a pit environment
- Mine safety, blasting parameters, fire, slope stability, material rolling back etc.
- Dependability to handle large quantities, breakdown analysis/unscheduled maintenance.

IV. STRUCTURAL DESIGNS OF STEEP ANGLE CONVEYOR

After detailed deliberations and discussions with manufacturers of Steep Angle Conveyor, two types of structural designs are approved for a feasible application in a mine.

SINGLE RUN SYSTEM

A single run system as shown in the drawing is suggested for a mine with Steeply to moderately dipping seams. In steeply dipping seams, as there is no inerrnal dumping. Steep Angle Conveyor can be The first position of Steep Angle Conveyor can be at a depth of 90m to 100m to reduce truck fleet. Individual cases must be studied in details to arrive at exact depth. If internal dumping is proposed in a moderately dipping seam, the structure can be shifted to a new location and the shifting period can be scheduled accordingly. Advance preparation at new site will certainly bring down this period significantly.

For coal production, rate should not be less than 4 to 5 Mtpa to justify investment on Steep Angle Conveyor. Life of mine after Steep Angle Conveyor installation should not be less than 18 years.

A dumper can pass underneath this structure and staircase is provided alongside Steep Angle Conveyor for maintenance personnels. A hydraulic lift can also be used for maintenance purposes.

It has also been noted that the system is quite robust and with proper maintenance and care it can provide sufficient dependebility to handle large production. The system is equiped with latest sensing system, overlaod protection system, fire sensors to avoid any untoward incidence resulting in unscheduled production loss. A shield is provided to protect vulnerable parts of the structure from fly rocks. Sufficent distance is also maintained from active face.

MODULAR SYSTEM

A modular system is suitable for the mines where frequent shifting is required with advancing internal dump benches. Every unit or module is self-sufficient and can be taken to a new site very quickly. The mode of transport can be crawler mounted at both ends, or 894173/2021/O/o HEAD OF OC DIVISION, CMPDI HQ

Sandwich Conveyor in a deep Pit

skid mounted to be pushed or pulled by a Dozer. Another popular design to render mobility is by removable crawler pads that can shift multiple units resulting in less investment on crawlers.

Modules can be time phased and are added to compensate for the growing depth of the pit.

Structural changes are possible where these modules can give sufficient clearance to a Truck passing underneath. This is especially important while internal dumping for OB Trucks plying within a closed circuit.

Inherent problem with design shown above is of shifting as support trestles are provided on alternate benches. This can be obviated by a cantilever design made possible by structural engineering.

Another added advantage of modular system of Steep Angle Conveyor is the enhanced dependability. Extra modules with a little additional cost can be fast replaced in the event of unscheduled break down. Certain modifications are required at the place on the bench to accommodate hoppers and tail endings.

It is understood that the Steep Angle Conveyor system will further evolve over time as more experience is gained in working with it. Indigenous practices for operations, shifting, and maintenance, will develop to greater adoptability. Many structural changes are envisaged while implementation phase of Steep Angle Conveyor as new insight emerge.

Modular Sandwich Conveyor in a deep Pit

V. APPLICABILITY

Coal with a lump size of preferably < 200 mm and evenly distributed for effective sandwiching and to avoid material falling back within the sandwich region.

Density-wise suitable for all types of coal and for medium density OB.

Normal Temperature is recommended for the belt and moisture may cause reduction in frictional force while sandwiching.

The best suitable position for Steep Angle Conveyor is along the side batter. Coal can be brought to the bottom most seam floor for 30 to 50 meters parting and for greater parting thickness, a separate unit can be planned for upper seams.

VI. JUSTIFICATION FOR APPLICATION OF STEEP ANGLE CONVEYOR SYSTEM IN THE PROPOSED OCP

- Due to high initial depth & steep quarry batter, it is difficult to install conventional conveyor.
- It improves economy of the mine.
- It is a highly productive system.
- It is an eco-friendly system.
- It is a traffic-friendly system.
- It is a space saving system.
- It is an energy saving system.
- It is a solution for transporting coal from quarry floor to surface at higher depth.

Application of High Angle Conveyor in Deep Opencast Coal Mine (A Case Study) for 15 mtpa non-CIL mine by CMPDI

894173/2021/O/o HEAD OF OC DIVISION, CMPDI HQ

XI. CONCLUSION & RECOMMENDATION

CONCLUSION

From the tables showing operating costs for Steep Angle Conveyor system and Dumper system, it is evident that the Steep Angle Conveyors along with inpit conveyors has reduced the 60T coal body dumpers by 87 nos. This has also reduced capital expenditure by about Rs.25 crores and cost of production by about Rs.78 per tonne.

In the proposed OCP, due to high initial depth, steep quarry batter and suitable geo-mining conditions, Steep Angle Conveyor has been proved cheaper, more productive, eco-friendly, trafficfriendly and space & energy saving solution for transporting coal from quarry floor to surface.

RECOMMENDATION

Steep Angle Conveyor is a new technology for Indian Coal Industry. For the success of Steep Angle Conveyor system, strict compliance of Project Report provisions, disciplined work culture, scheduled maintenance, condition-based monitoring and adherence to provisions of DGMS guidelines for the safety of men & machineries are highly recommended.

Proposal from Adani Natural Resources for High Angle Conveyor for Gare Palma II, planned by CMPDI

On 7/28/2022 3:12 AM, Pallab Mukherjee wrote:

Dear Sir,

Greeting from Adani Enterprises Ltd.,

Currently, we are in the process of installing High angle conveying from bottom of pit to ground surface at our Gare Pelma-II Project.

Operating Parameters:

- 1. Material application - Coal
- 4000 TPH (Rated) (If maximum capacity of 4000 TPH is not available, then please consider 2 working conveyors.) 2. System capacity 3. Lump Size
 - (-) 100 (10 15% of (+) 100 mm Lump shall be considered in design)
- 4. Bottom of Pit - EL (+) 191 M
- 5. Ground level at surface - EL (+) 289 M (Please consider EL (+) 295 as floor level of discharge high angle conveyor)
- 6. Offset distance between head end and tail end 109 m
- 7. Density - 0.8 Mt/Cum
- 8. Moisture Content - Please consider typical for Indian coal
- 9. High angle conveyor taking feed from Apron Feeder / Belt Conveyor of 4000 TPH Capacity / 2 x 2000 TPH Capacity as required.
- 10. High Angle Conveyor discharging to surface Belt conveyor.
- 11. Mining by surface miner.

12. Snap shot for the arrangement is attached herewith for your reference.

Layout proposed by Dos Santos, USA

CASE STUDIES BY DOS SANTOS INTERNATIONAL IN INDIA

CASE STUDY FOR OPENCAST APPLICATION AT SARISHATHALI MINE AS REQUESTED BY CESC

PRESENT HIGHWALL IN 'OB'

HOW DSI SNAKE CONVEYOR SHALL LOOK

LAYOUT OF IN-PIT CRUSHING & DSI SNAKE IN 'OB' HIGHWALL ON CTUAL MINE PLAN

- ALL INFORMATION IN ALL AND IN ALL AND INVESTIGATION AND ALL AND ALL PROVID TOWARD INFORMATION TO BE ADDRESS AND ALL AND ALL AND ALL PROVID TOWARD INFORMATION TO BE ADDRESS AND ALL AND ALL AND ALL PROVID TOWARD INFORMATION AND ALL AND ALL AND ALL PROVID TOWARD INFORM TO BE ADDRESS AND ALL AND ALL AND ALL AND ALL PROVID TOWARD INFORMATION AND ALL AND AL Xons are in un & levels are in neter 1 side of the nine is presently being

LE COWEOR
and Manhael State of State
and a second second
-HCM-LO-0 1

TRUCK UNLOADING & CRUSHING OF COAL AT PIT BOTTOM & LOADING ONTO BENCH CONVEYOR FOR FEEDING ONTO DSI CONVEYOR

BENCH CONVEYOR

TFH - 700 B ELT WIDTH - 1000 MM BELT LIFT - 0.0 M LENGTH - 62 m (Approx) ANGLEO F SLOPE - 0° D RIVE POWER - XX MW

NOTE: 1. All churdisions are in um & levels are in meters unless otherwise hoted.

TRUCK UNLOADING & CRUSHING OF COAL AT PIT BOTTOM

LAYOUT OF DSI SNAKE HIGH ANGLE CONVEYOR ON 'OB' HIGHWALL

CALCULATION OF OWNING & OPERATING COST FOR DSI CONVEYOR & IN-PIT CRUSHING

(INVESTMENT MADE IN '0' YEAR	2	HAC + Feeder Breaker + Conveyor & other	Bench s Dumper cost (Rs)				
3.0	Annual operating hours	1400 mm HAC (200 m profile length)	Total dumper cost calculated with av. round trip distance of 1.5 km @ Rs 12.00 per te per km	HAC + Feeder Breaker + Bench Conveyor & others		<u>M INR /a</u>	<u>Rs / te</u>
t/hr	4,250.0		18.0			10.0%	
No.of linesunits >		1	OPERATING LI	F E OF PROJECT	[YEARS]>	9	
	MINR	360.00		360.0		360.0	
	M INR/a 1000 INR 1000 INR	62.51		62.51		62.51	21.01
6.00		10 500		40 500	0.000	40 500	0.557
	M INR/a	19.508		19.508	0.000	19.508	6.55/
	kW	900	4				
2	kW	765					
	M INR/a	10.000		10.000	0.000	10.000	3.361
	%of Inv M INR/a %of Inv M INR/a			0.00	0.00 0.00	0.00 0.00	0.00 0.00
	M INR/a	36.000		36.000	0.000	36.000	12.101
	M INR/a Group Hrs/a M INR/a	10.00%			192 Sharryeve		
IPC & HAC Operating Cost MINR / a>		65.51	OPERATIN	OPERATING COST FOR HAC & IPC (Rs/Te)			22.02
st for System I Rs/Te			18.00	Dumper o	ost (Rs/Te)		18.00
IPC, Conveyor & Dumper shuttle in-pit Alte			Total for IPC (onveyor & Du	moor chuttl	O (Be(To) >	40.02
	ALTERITMENT MADE IN '0' YEAR 3.0 t/hr No.of linesunits > 6.00 6.00	ALTERNATIVE IN 10' (INVESTMENT MADE IN 10' YEAR 3.0 Annual operating hours t/hr 4,250.0 No.of linesunits > M INR M INR/a 1000 INR 1000 INR 1000 INR 6.00 M INR/a & kW kW M INR/a kW M INR/a %of Inv M INR/a %of Inv M INR/a %of Inv M INR/a M INR/a M INR/a M INR/a M INR/a M INR/a Sost MINR / a>	IALLEAVIAGE IN '0' YEAR HAC + Feeder Breaker + Conveyor & others 3.0 Annual operating hours 1400 mm HAC (200 m profile length) t/hr 4,250.0 I MINR 360.00 MINR/a 6.00 M INR/a 62.51 1000 INR 1000 INR 6.00 M INR/a 19.508 KW 900 85% KW 6.00 M INR/a 10.000 M INR/a 10.000/s M INR/a 10.000/s M INR/a 10.00% M INR/a 10.00% M INR/a 10.00% M INR/a 65.51 St for System 1 Rs/Te	Accent Back in the second se	INVESTINATION IN COLSPANS INVESTINATION IN COLSPANS HAC + Feeder Breaker + Bench Conveyor & others Dumper cost (Rs) 3.0 Annual operating hours 1400 mm HAC (200 mp rofile length) Total dumper cost calculated with av. round trip distance of 1.5 km @ Rs HAC + Feeder Breaker + Bench Conveyor & 12.00 per to per km Vhr 4,250.0 18.0 No.of linesunits > 1 OPERATING LIFE OF PROJECT M INR/a 360.00 360.0 M INR/a 62.51 360.0 6.00 M INR/a 19.508 KW 900 85% KW 900 10.000 %of Inv M INR/a 10.000 10.000 M INR/a 360.00 0.00 M INR/a 10.000 10.000 %of Inv M INR/a 360.00 360.00 M INR/a 360.00 0.00 %of Inv M INR/a 36.000 0.00 M INR/a 36.000 36.000 M INR/a 36.000 36.000 M INR/a 10.00% 0.00 M INR/a 10.00% 0.00 M INR/a 65.51 OPERATING COST FOR HAC MINR / a> 65.51 Dumper cost FOR HAC	INVESTMENTION HAC + Feeder Breaker + Bench Conveyor & others Dumper cost (Rs) 3.0 Annual operating 1400 mm HAC (200 m profile length) Total dumper cost calculated with av ort 1,5 km @ Re 12.00 per te per km HAC + Feeder 200 morts Whr 4,250.0 18.0 MiNR 360.00 360.0 MINR/a 62.51 0PERATING LIFE OF PROJECT (YEARS)> 6.00 MINR/a 62.51 1000 INR 19.508 19.508 6.00 MINR/a 19.508 KW 765 19.000 MINR/a 10.000 0.000 WiNR/a 10.000 0.000 MINR/a 10.000 0.000 MINR/a 10.000 0.000 MINR/a 10.000 0.000 MINR/a 10.000 0.000 WiNR/a 10.000 0.000 MINR/a 36.000 0.000 MINR/a 36.000 0.000 MINR/a 36.000 0.000 MINR/a 36.000 0.000	INVESTMENT INTEL HAC + Feeder Breaker + Bench Conveyor & others Dumper cost (Rs) 3.0 Annual operating hours 1400 mm HAC (200 m profile length) Total dumper cost round trip distance of 1.5 km @ Rs 12.00 per te per km HAC + Feeder Breaker + Bench Conveyor & others MINR/a 1 0 18.0 360.0 360.0 360.0 M INR/a 62.51 62.51 62.51 62.51 62.51 1000 INR 19.508 360.00 360.00 360.00 360.00 M INR/a 62.51 62.51 62.51 62.51 62.51 1000 INR 19.508 0.000 19.508 0.000 19.508 KW 900 85% 0.000 10.000 0.000 0.000 KW 765 0.000 10.000 0.000 0.000 0.000 M INR/a KW 36.000 36.000 0.000 0.000 0.000 0.00 M INR/a Group Hrs/a M INR/a 36.000 36.000 0.000 36.000 0.000 36.000 0.000 M I

OPERATING COST FOR IN-PIT CRUSHING & DSI CONVEYOR (ALT – I)

ALT I IPC, HAC and Dumper shuttle Cost

Rs/ te

AMC Cost	12.10				1.207	12.10	30.2%
Energy		6.56				6.56	16.4%
Spare Parts			3.36		۲	3.36	8.4%
Dumper cost				18.00		18.00	45.0%
TOTAL COST	12.10	6.56	3.36	18.00	1.1	40.02	100.0%
				1		1	

COMPARISON OF COST FOR BOTH DSI SNAKE (ALT – I) & TRUCK TRANSPORT (ALT II)

				12 C		
DATA TABLE	ALTERNATIVE II DUM	PER SHUTTL				
ANNUAL PRODUCTION	3.0	Million Te/Annum		9		
700	t/hr	4,250	EFEECTIVE ANNUAL HOURS			
	DUMPER COST/TE/KM (INR)	IPC & HAC COST (INR)	AV. DUMPER ROUND TRIP DISTANCE (KM)	DUMPER COST (INR)	CRUSHING COST (INR)	TOTAL COST (INR)
Alt - II	12.00	0.00	6.30	75.60	10.00	85.60
Alt - I	12.00	22.02	1.50	18.00	0.00	40.02
NOTE: ONE	WAY DUMPER LEAD DISTA	NCE SHALL VARY	AS FOLLOWS:			S.K.BAG
ALT - 1 - 0.5	KM TO 1 KM					
ALT II - 2.8	KM TO 3.5 KM					

IRR CALCULTION FOR DSI SNAKE CONVEYOR SYSTEM

A	B	C	D	E	F	G	Н	I.	J	K	L
IRR &	NPV CALCULAT	ION (INVEST	MENT MADE I	N '0' YEAR)							
		ALTERNATIVE I (IPC & HAC)			ALTERNATIVE -	II (DUMPER SHUTTL	E TO SURFACE)	DIFFERENCE	NET SAVINGS	ANNUAL PRODUCTION (MTPA)	DISCOUNT RATE FOR NPV
YEAR	CAPITAL INVESTMENT (MINR) FOR ALT-I	OPERATING COST/TE (INR)	DUMPER COST/TE (INR)	TOTAL COST FOR ALTERNATIVE I	DUMPER COST/TE (INR)	CRUSHING COST/TE (INR)	TOTAL COST FOR ALTERNATIVE II	COST/TE (INR)	MINR	3.00	10%
0 year	-360.00			0	a		8				
1st	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
2nd	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
3rd	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
4th	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
5th	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
6th	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
7th	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
8th	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
9th	136.74	22.02	18.00	40.02	75.60	10.00	85.60	45.58	136.74		
LACK PROPERTY.	kal separate										
NPV	787.50										
IRR	36%										
	22 P										

NOTE: A NOMINAL CRUSHING COST OF RS 10.00 HAS BEEN ASSUMED IN CALCULATION. ACTUAL CRUSHING COST IS LIKELY TO BE MORE. INCREASE IN CRUSHING COST SHALL FURTHER IMPROVE IRR.

CASE STUDY FOR KATHARA PROJECT AS REQUESTED BY DIRECTOR (TECHNICAL), CCL

SURVEYED PLAN OF EASTERN SECTOR OF KATHARA MINE

AERIL VIEW OF HAC FROM BOTH EASTERN SECTOR & CENTRAL SECTOR PITS & OVERLAND CONVEYOR TO WASHERY

© 2016 Google

130 m

Google Farth

CONTOUR DRAWN BASED ON GOOGLE EARTH

2	NPV, IRR & PAY BACK PERIOD	FOR SYSTEM II								ANNEXURE 7	CO A
3			1	SYSTEM - I		SYSTEM - II		SAVINGS IN COST FOR SYSTEM II	ANNUAL NET SAVINGS	ANNUAL PRODUCTION (MTPA)	DISCOUNT RATE FOR NPV
4	YEAR	CAPITAL INVESTMENT (MINR) FOR SYSTEM - II	OPE	RATING COS (Rs/Te)	т	OPERATING CO: (Rs/Te)	ST	COST/TE (INR)	MINR	1.	00 10%
5	0 year	-248.80	9. 	-10 - 57		Sh - Sh					101
6	1st	55.68	41	90	0.00	3	4.32	55.68	55.68		
7	2nd	55.68		90	0.00	3	4.32	55.68	55.68		
8	3rd	55.68		90	0.00	3	4.32	55.68	55.68		
9	4th	64.18	0	90	8.50	3	4.32	64.18	64.18		
10	5th	64.18	8	98	8.50	3	4.32	64.18	64.18		
11	6th	64.18	0	90	8.50	3	4.32	64.18	64.18		
12	7th	64.18	s:	90	8.50	3	4.32	64.18	64.18		
13	8th	73.53		10	7.85	3	4.32	73.53	73.53		
14	9th	73.53	20 21	10	7.85	3	4.32	73.53	73.53		
15	10th	73.53	0	10	7.85	3	4.32	73.53	73.53		
16	11th	73.53	8	10	7.85	3	4.32	73.53	73.53		
17	12th	83.82	0.	110	8.14	3	4.32	83.82	83.82		
18	13th	83.82	8	118	8.14	3	4.32	83.82	83.82		
19	14th	83.82	0	110	8.14	3	4.32	83.82	83.82		
20	15th	83.82	_	110	8.14	3	4.32	83.82	83.82	-	
21	NET PROFIT (MINR)	804.38	1				100 N				
22	NPV (MINR) @ 10%	504.06				INV, ORC	J 33, N	IFV & DUF			
23	IRR	24%			-						
24	PAY BACK PERIOD (YRS)	4.47		1,000.00	1	804.38					
25	DCF (MINR)	475.13		000.00			1				
26		1.122.0		800.00			504	4.06	INVESTMEN	т	
27	SYSTEM II	MINR	Ľ	600.00				475.13			
28	INVESTMENT	248.80	1 IS	600.00					-NET PROPI	T.	
29	NET PROFIT	804.38		400.00	248.	80		THE R. L.	NPV		
30	NPV	504.06		400.00					DCF		
31	DCF	475.13	-	000.00							
32			2	200.00							
33	NOTE: DCF has been calculated co	nsidering NPV @ 10%		0.00		and the second	Sec.				
34	& escalation @ 4% per year		1	0.00 -			ND	DCF			
35					1	NET	NP	DUF			
36			0				-0-				
37				S.I	к.Вад	5			S.K.BAG		/4
38											

Google earth and mine transport system for Kathara

https://youtu.be/rYtnlB8Ggj8

CASE STUDY FOR KUSMUNDA OPENCAST PROJECT AS REQUESTED BY PROJECT

PRESENT DUMPER TRANSPORT AT KUSMUNDA OPENCAS

CMPDI PROPOSAL - WEST SIDE AND EAST SIDE FLANK OLC TO CHP

PROPOSAL FOR TRANSPORTING COAL BY DSI SNAKE HAC FROM TOP & MIDDLE COAL SEAMS FROM BENCHES TO FLANK CONVEYORS

FINAL STAGE OF QUARRY PLAN

INTEGRATED SCHEME OF COAL TRANSPORT FROM KUSMUNDA BOTTOM SEAM

DUMPER UNLOADING ARRANGEMENT THROUGH RECEIVING PIT AT PIT BOTTOM

BELT FEEDER BELOW RECEIVING PIT

BENCH CONVEYOR LOADING THREE DSI SNAKE HIGH ANGLE CONVEYORS

- 1. ALL DIMENSIONS ARE IN MM & LEVELS ARE IN METERS UNLESS OTHERWISE NOTED.
- 2. THIS IS AN INTEGRATED SCHEMITEC ARRANGEMENT SHOWING DUMPER UNLOADING DSI SNAKE
- HIGH ANGLE CONVEYOR SYSTEM FOR TRANSPORT OF COAL FROM KUSMUNDA BOTTOM SEAM TO SURFACE. 3. THREE NOS. WITH 2 WORKING & 1 STANDBY DSI SNAKE HAC OF 4000TPH GAPACITY (EACH)
- HAS BEEN PROPOSED.
- 4. EACH DUMPER RECEIVING HOPPER SHALL BE ABLE TO RECEIVE COAL FROM 5 NOS, 60 T DUMPER SIMULTANEOUSLY,
- 5. RECEIVING HOPPER SHALL BE SKID MOUTED & SHIFTABLE.
- 6. ALL THE DSI SNAKE HAC CAN BE DISMANTED & SHIFTED WITHIN PIT AS AND WHEN REQUIRED. 7. ALL DIMENSIONS ARE INDICATIVE.

w

READ THIS DRAWING IN CONJUNCTION WITH

PROPOSED DSI HIGH ANGLE CONVEYOR FROM PIT BOTTOM TO SURFACE

A CASE STUDY ON COMPARISON BETWEEN ALL TRUCK SYSTEM & CONVEYOR WITH HIGH ANGLE CONVEYOR SYSTEM

High Angle Conveyor Offers Mine Haulage Savings

Authors:

J.J. Mitchell Manager - Systems Continental Conveyor & Equipment Co. Inc., Winfield, Alabama, U.S.A. D.W. Albertson General Manager/Director Spencer (Melksham) S.A. (Pty) Ltd. Johannesburg, South Africa

FIG - 1

PIT SHOWING TRUCK HAULAGE SYSTEM

COMPARISON OF CAPITAL COST BETWEEN CONVEYOR, HIGH ANGLE CONVEYOR AND DUMPER

<u>TYPICAL ARRANGEMENT OF MODULAR</u> <u>HIGH ANGLE CONVEYORS</u> Spencer(Melksham) S.A. (Pty)Ltd. <u>ADDENDUM</u> <u>COMPARATIVE COSTS OF CONVENTIONAL</u> <u>VERSUS</u> <u>HIGH ANGLE CONVEYING</u> <u>IN A SOUTH AFRICAN OPEN PIT MINE</u>

Introduction

This is a summary of a study which evaluates the difference in Initial and Maintenance costs (over a 15 year period) of two alternative systems for conveying material out of an open pit mine. It compares only the conveyors needed to lift material from pit bottom to it's lip.

SYSTEM 1

CONVENTIONAL conveyors, each of capacity 5 000 tph, Single flight length, 1 000 metres, lift 80 metres. 3 flights with total length of 3 000 metres for overall lift of 240 metres. Angle of lift 4,3 degrees.

SYSTEM 2

HIGH ANGLE conveyor, capacity 5 000 tph, Single flight length 391 metres, lift 240 metres, Angle of lift 53 degrees.

The conclusion reached is that the High Angle Conveyor is the most economical alternative. The cost per tonne of ore transported is 4 cents versus 6 cents for conventional conveyors. Truck haulage could, by comparison, cost 41 cents per tonne or more.

COMPARISON OF CAPITAL COST BETWEEN CONVEYOR AND HIGH ANGLE CONVEYOR OVER 15 YEARS

A. CAPITAL COSTS

Capital costs were established by estimating each system in detail to an accuracy of +-10% These costs are summarised on Table A.

The High Angle Conveyor does not require a seperate drive house as the drives are positioned in the head end structure.

	Capacity TPH	No. of flights	Total Lift	Total kW Inst.	Full Load kW	50% Load kW	No. Load kW	Head sect. Cost	Lin.M. Costs	Tail & TU Sect Cost	Drive Hse Costs	Total Installed Cost
								R000s	R000s	R000s	R000s	R000s
Conventional Conveyors												
3 off each	5000	3	240m	6030	4797	2745	399	4825	5898	578	928	12229
1000m long 80m lift 1800mm wide 3,0m/sec		@ 4,3°										
High Angle												

Conveyor												
1 off	5000	1	240m	4800	4292	2404	520	3549	3833	1134	-	8516
391m long 240m lift 2100mm wide 3,48m/sec		@ 53°										

COMPARISON OF MAINTENANCE COST BETWEEN CONVEYOR AND HIGH ANGLE CONVEYOR OVER 15 YEARS

TABLE A : BASIC PARAMETERS AND CAPITAL COST SUMMARY

INDICATION OF COSTS SUMMARY MAINTENANCE COSTS OVER 15 YEARS

R x 1000

	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th year
Conventional Conveyors 3 off	878	941	1079	1210	1386	1243	1393	1563	1753	1966	1810	2031	2280	2560	2875
High Angle Conveyor 1 off	403	424	500	561	648	616	691	776	870	977	962	1080	1213	1363	1531

.

COMPARISON BETWEEN CONVENTIONAL CONVEYOR, HIGH ANGLE CONVEYOR AND DUMPER

C. OPERATING COSTS PER TONNE

	Conventional <u>Conveyors</u>	High Angle <u>Conveyor</u>	
1. Actual operating hours: 6 days at 24 hours per day, 309 days a year =	7 416 hrs per year	7 416 hrs per year	
2. Conveyors 1st year maintenance costs = Per hour =	R878 145 R118,41	R402 574 R54,28	
3. Full load power consum- ption @ R0,037 per kW/hr	4 797 kW R177,49	4 292 kW R158,80	
4. Total operating and running costs for 1 hour = Cost per tonne @ 5000 tph = S.K.Bag	R295,90 R0,06	R213,08 R0,04	Dumper cost – R 0.41

UNDERGROUND APPLICATION HIGH ANGLE CONVEYOR IN SHAFT FOR JAGANNATHPUR UNDERGROUND COAL MINE OF SHYAM STEEL (APPLICATION OF VERTICAL HIGH ANGLE CONVEYOR)

PROPOSAL FOR DSI HIGH ANGLE CONVEYOR FROM R-III SEAM (6.0 M THICK) 355.87 M BELOW **GROUND LEVEL**

INFO@DOSSANTOSINTL.COM FAX: +1 866 473 2252

SHAFT DIA SHALL BE 5.0 M (8.0 M FOR SKIP)

INDUSTRIAL ELEVATOR (RACK & PINION TYPE) SERVICE CAGE

Industrial elevators feature a rack and pinion drive for safe, reliable operation. Elevators are designed for safety. The pinion, which is driven by an electric motor mounted on top of the car, mates with the tower rack allowing the car to travel up or down on command. An electric multiple disc brake on the motor is used to stop travel. A loss of power automatically sets the brake.

In the event of a power failure, the car can be safely lowered to the nearest landing.

RACK & PINION HOIST FOR MAN & MATERIAL

MAN & MATERIAL CAGE IN THE SHAFT WITH HIGH ANGLE CONVEYOR

VERTICAL TRANSPORT THROUGH SHAFT BY HIGH ANGLE CONVEYOR (90 DEGREE)

U/G CONV. SHALL DIRECTLY DISCHARGE ONTO HIGH ANGLE CONVEYOR

VERTICAL STRUCTURE OF HIGH ANGLE CONVEYOR FROM UNDERGROUND

05.11.2006

0

C

DISCHARGE END OF HIGH ANGLE CONVEYOR AT SURFACE – CONVEYOR SHALL DIRECTLY DISCHARGE ON SURFACE CONVEYOR (SKIP HOPPERS, HEADGEAR STRUCTURE, WINDING ENGINE HOUSE AT SURFACE SHALL BE ELEMINATED)

DESIGN BASIS OF HIGH ANGLE CONVEYOR SYSTEM IN SHAFT

For design of HAC system in shaft, first number of flights shall be determined (depending upon shaft depth and belt strength). Based on design parameters, the scheme of the intermediate structure are determined. The intermediate vertical structure from the bottom are designed as a column. The intermediate vertical structure from the top shall be hung from the top including hanging support at one end of the upper station, while the other (tail) end sat on its own support at the shaft bottom making only a positioning connection at the lower transition station.

The intermediate vertical structure are supported as vertical independent tables so that they don't actually touch each other or the bottom transition station or the upper discharge station.

The independent vertical supports may be anchored to the shaft wall. The length of each vertical support will likely be to be determined by the longest steel mill run length of the support channels and the idler/press section spacing.

The support scheme of the rack and pinion type elevator is well established by the elevator manufacturer and must be provided by them after they have developed the elevator for the specific requirements.

It must be determined if the elevator shall be used as the only means to access the DSI GPS or if the system will have intermediate platforms where the elevator can stop.

COMPARISON BETWEEN SKIP WINDER & HAC

	SKIP WINDER**	DSI SNAKE HIGH ANGLE CONVEYOR
MATERIAL	COAL	COAL
DEPTH OF SHAFT	300 M	300 M
PRODUCTION PER HOUR	250 TPH	250 TPH
SHAFT DIA	7.0 M	5.0 M
CAP OF SKIP	7.5 TE	
SPEED OF WINDER/HAC	8 M/SEC	3.0 M/SEC
DRIVE POWER	600 KW	320 KW
BELT WIDTH FOR HAC		1000 MM
ESTIMATED CAPITAL COST (CRORE)	50.00	45.00

NOTE:

1	Estimated capital cost & specification for skip winder has been obtained from authentic source
2	DSI Snake HAC can achieve around 300 TPH @ 3.0 M/SEC
3	Cost of High Angle Conveyor system is including shaft sinking, shaft fittings & man/material rack & pinion type auxiliary cage
4	Estimated annual savings in power cost shall be around 1.5 Cr for HAC

COMPARISON BETWEEN INCLINE & HAC SYSTEM

ALT I – DOG LEGGED INCLINE (FOR LONG INCLINE)

TOTAL DEPTH – 400 M (UPTO BOTTOM SEAM) LENGTH OF INCLINE IN 1 IN 5 GRADIANT – 2000 M COST OF INCLINE DRIVAGE @ 2.5 LAKH/M = 2000 X 2.5 = RS 50 CR CONVEYOR CAPACITY – 1000 TPH CONVEYOR COST FOR 2000 M (@2.5 LAKH/M) = RS 50 CR – CONVEYOR ROUTE SHALL BE JIG JAG WITH MULTIPLE TRANSFER POINTS (IN-EFFICIENT) CONVEYOR DRIVE POWER FOR 1400 MM WIDE, 1000 TPH CAP, 400 M LIFT = 1800 KW LIFE OF BELT = 8 YEARS (STEEL CHORD) IN-EFFICIENT VENTILATION & LONGER CONSTRUCTION TIME

ALT II – HIGH ANGLE CONVEYOR THROUGH SHAFT

SHAFT DEPTH – 400 M COST FOR SHAFT SINKING FOR 5.0 M DIA (@ 4.0 LAKH/M) = RS 16 CR CONVEYOR CAPACITY – 1000 TPH BELT WIDTH – 2000 MM HIGH ANGLE CONVEYOR COST = 400 X 12.4 = RS 50 CR TOTAL DRIVE POWER FOR = 2 x 800 KW COST OF RACK & PINION CAGE = 30 LAKH LIFE OF BELT – 16 YEARS EFFICIENT VENTILATION & LESS CONSTRUCTION TIME

BALASORE CHROMITE MINE

PRESENTLY DUMPER TRANSPORT FROM PIT BOTTOM

PROPOSAL FOR DSI HIGH ANGLE CONVEYOR IN OPENCAST PORTION

CONCEPT & PROPOSAL OF IN-PIT CRUSHING & HIGH ANGLE TRANSPORT FROM PIT BOTTOM INSTEAD OF PRESENT TRUCK TRANSPORT

DUMPER DISCHARGE ON TO SIZER

THE ORE SEAM IS EXTENDED BELOW THE GROUND LEVEL VERTICALLY MORE THAN 800 M. ORE IS PRESENTLY EXTRACTED BY OPENCAST UPTO 380 M AND THERE AFTER THROUGH VERTICAL SHAFT
VERTICAL HIGH ANGLE CONVEYOR FOR TRANSPORTING ORE BELOW 380 M

INTEGRATED HAC SYSTEM FROM UNDEGROUND TO SURFACE – COMPARISON WITH SKIP SYSTEM

CONCEPT OF TRANSPORTING ORE FROM PIT– BOOTOM TO SURFACE BY DSI HIGH ANGLE CONVEYOR FOR JHAMARKOTRA ROCK PHOSPHATE MINE OF RSMML

Presented by Shyamal Kumar Bag Representative of DSI, USA in India

WRITE-UP

Jhamarkotra Rock Phosphate Mine - The biggest mines (open cast) of Rock phosphate in Asia.

A Phosphate Mine in India owned by RSMML. Rock Phosphate mines at Jhamarkotra & Kanpur Group of Mines are complex deposits. Mining these rock phosphate deposits is far more difficult than that in most parts of the world. Despite the complexities of the deposit, excellent results have been achieved by continuous innovations.

With an annual rock handling of about 20 million tonnes, Jhamarkotra is probably the largest open cast mine in India outside the steel and coal sectors. On technical fronts the problem of ground water had affected the mining operations, until an effective dewatering scheme was evolved and implemented. The geometry of the ore body i.e thin and sharply dipping had resulted in long and narrow pits with great depth extension (Depth/deposit is between 380 and 600 m).

PRESENT MINE

PRESENT MINE

DUMPER TRANSPORT IN BENCHES

DUMPER TRANSPORT FROM PIT-BOTTOM

COST BENEFIT ANALYSIS UPTO 400 M DEPTH OF MINE

Cost Benefit Analysis of DSI High Angle Conveyor

Calculations showing yearly EMI (MINR) and yearly profit (MINR) for application of DSI high angle conveyor replacing dumper transport in opencast mine.

COMPARISON OF TRANS	SPORT COST BY DSI SNAKE HIGH ANGLE CONVEYOR, IPCC			
AND DUMPER TRANSPO	RT SYSTEM FROM PIT BOTTOM IN OPENCAST MINE - MINE OPTIMISATI	ON METHOD BY S.K.BAG		
SUMMARISED COMPARA	ATIVE STATEMENT FOR SYSTEM - I,II & III			
System - I:	In-pit crusher, DSI Snake HAC from pit bottom to surface and dumpe	er shuttle at coal face		
System - II:	In-pit crusher, conveyor from in-pit crusher to surface chp and dum	per shuttle at coal face		
	to in-pit crusher			
System - III:	Dumper transport from coal face to surface and crushing of coal at	surface		
IN-PUT DATA TABLE:				
1. Total annual production	on (MTe)	10.00	9. Annual interest rate (%)	10.00%
2. Capacity of the system	n (TPH)	1,683.00	10. Annual escalation rate (%)	4.00%
3. Annual operating hou	rs (Hrs)	5,940.00	11. Life of in-pit crusher	18
4. Lead distance of dum	per (one way) from coal face	1.000	12. Life of conveyor system (years)	13
to surface chp for Sys	tem II (kM)	1.52	13. Life od DSI HAC system (years)	16
5. Lead distance of dum	per (one way)		14. Life of dumper (years)	10
from coal face to in-p	it crushing station for System I (kM)	1.00	15. Crushing cost at surface (Rs/Te)	45.00
6.Depth of mine		100.00	16.E. Unit cost per unit	7.00
7. Dumper capacity (Te)		100.00	17. Rate of progess of mine face	2.50%
7. Length of IPC convey	or (meter)	1,520.00	840	10%
8.Length of DSI Snake H	AC (meter)	189.70	19. Diesel price (Rs/Lit)	85.00

	TABLE SHOWING YEARLY CAPITAL COST AND YEARLY GAIN FOR USING HIGH ANGLE CONVEYOR REPLACING DUMP VARIOUS MINE DEPTH							MPERS FOR
	60.76			R	s / te		Yearly gain	Total yearly capital cost
Macro command	Annual production (mtpa)	Depth (m)	System I	System II	System III	Diff. between System I and III	(MINR)	(MINR)
CNTRL+SHFT+L	10.00	100	40.99	47.12	85.81	44.82	448.17	60.76
CNTRL+SHFT+M	10.00	150	43.44	51.89	96.01	52.58	525.75	76.45
CNTRL+SHFT+N	10.00	200	45.88	56.66	121.52	75.64	756.37	92.14
CNTRL+SHFT+P	10.00	300	50.77	66.20	147.02	96.25	962.54	123.53
CNTRL+SHFT+R	10.00	400	55.66	75.75	167.43	111.77	1,117.70	154.91

HIGH ANGLE CONVEYOR FOR TISCO PLANT

PROPOSAL FOR DSI CONVEYOR TO CARRY SINTERS OVER TROLLEY LOCOMOTIVES TO GAIN HEIGHT

DSI OFFER FOR SILO LOADING REPLACING POCKET BELT FOR BHEL

DSI 22-119 DWG-MODEL

DSI HIGH ANGLE CONVEYOR AS MOBILE WAGON LOADER

<u>APPLICATION – III</u> <u>HIGH ANGLE CONVEYOR FOR</u> <u>DOWNHILL TRANSPORT</u>

LAYOUT OF UPHILL AND DOWNHILL HIGH ANGLE CONVEYOR ALONG SIDE WALL IN OPENCAST

DOWNHILL APPLICATION OF HIGH ANGLE CONVEYOR - COMPARISON OF ECONOMICS BETWEEN CONVENTIONAL CONVEYOR & HIGH ANGLE CONVEYOR (CASE STUDY REQUESTED BY SCCL)

	HAC SYSTEM	
ALT II	CONVENTIONAL CONVEYOR SYSTEM	
	ALT I	ALT II
PRODUCTION (MTPA)	3.5	3.5
ANNUAL OPERATING HOURS	5000	5000
ROUTE LENGTH (M)	450	4800
No.OF UNITS	2	2
NO.OF FLIGHTS	1	4
KW	1800	2400
UNIT COST (Rs)	6.00	6.00
MANPOWER (OPERATION)	2	2
PER UNIT PER FLIGHT PER SHIFT		
MANPOWER (MAINTENANCE) - GROUP	4	8
PER SHIFT		
ANNUAL SALARY (BENEFIT) PER PERSON (LAC)	300000	300000
RATIO OF BENEFIT OF MAINTENANCE CREW	1.2	1.2
LIFE OF BELTING (YEARS)	12	8
RATE OF BANK INTEREST	10%	10%
DISCOUNT RATE	10%	10%
TOTAL INVESTMENT (MINR)	500.00	400.00

ALT I	HAC SYSYEM		HAC + Bench Conveyor + Crusher	Dumper cost (Rs)		Ĩ	1	
Total production (Million Te)	3.5	Annual operating hours	HAC (450 m profile length)	Total dumper cost calculated with av. round trip distance of 1.5 km @ Rs 12.00 per te per km	HAC + Bench Conveyor + Crusher		<u>M INR /a</u>	<u>Rs / te</u>
700.0	TPH	5,000.0			8 3		10.0%	
1	No.of linesunits >	-2	2	OPERATING L1	F E OF PROJECT	[YEARS]>	12	
INVESTMENT		MINR	500.00		500.0		500.0	
YEARLY CAPITAL COST Length m S. Weight t ex factory erection transport		M INR/a 1000 INR 1000 INR	73.38		73.38		73.38	20.97
Elec. Unit cost (Rs)	6.00							
ENERGY COST		M INR/a	91.800		91.800	0.000	91.800	26.23
Installed Power		kW	1,800	11	ñ	B		
av.Load factor ex factory		kW	85% 1,530					
SPARES COST		M INR/a	60.000		60.000	0.000	60.000	17.14
Spares / 1000h		%of Inv	0.90%					
		M INR/a	22.500		22.50	0.00	22.50	6.43
Wearparts/1000h		%of Inv M INR/a	0.30% 7.500		7.50	0.00	7.50	2.14
	3,00,000.00	1.2		<u>.</u>	2			
ABOR COST		M INR/a	7.680		7.680	0.000	7.680	2.19
Manning / unit (2 shifts) Oper.Labor Repair Labor (2 shifts) Group		M INR/a Group Hrs/a	8 4.800 8					
Repair.Labor		M INR/a	2.880		2 2010-2010-00	1000000	050000	
CAPITAL & OPERATING COST	FOR HAC SYSTEM	MINR / a>	232.86 K.Bag		TOTAL C	OST	Rs/Te	66.53
					OPERATING	G COST	Rs/Te	45.57

ALT I BREAK DOWN COST OF HAC SYSTEM

Rs/ te

(Capital	20.97				200	20.97	31.5%
E	Energy		26.23				26.23	39.4%
Spare	Parts			17.14			17.14	25.8%
100020000	Labor				2.19		2.19	3.3%
TOTAL	COST	20.97	26.23	17.14	2.19	10	66.53	100.0%
	Į Į							

ALT II	CONVENTIONAL CONVEYOR SYSTEM		Conventional Conveyor + Crusher	Dumper cost (Rs)				
Total production (Million Te)	3.5	Annual operating hours	Conveyor (4.8 kM)	Total dumper cost calculated with av. round trip distance of 1.5 km @ Rs 12.00 per te per km	Conventiona I Conveyor + Crusher		M INR /a	<u>Rs / te</u>
700.0	TPH	5,000.0	7	2 C			10.0%	
	No.of linesunits >	de en esta	4	OPERATING L1	F E OF PROJECT	[YEARS]>	8	
INVESTMENT		MINR	400.00		400.0		400.0	
YEARLY CAPITAL COST Length m S. Weight t ex factory erection transport		M INR/a 1000 INR 1000 INR	74.98		74.98		74.98	21.42
Elec. Unit cost (Rs)	6.00			2				
ENERGY COST		M INR/a	244.800		244.800	0.000	244.800	69.94
Installed Power av.Load factor ex factory		kW kW	2,400 85% 2,040					
SPARES COST		M INR/a	96.000		96.000	0.000	96.000	27.43
Spares / 1000h Wearparts/1000h		%of Inv M INR/a %of Inv	0.90% 18.000 0.30%		18.00	0.00	18.00	5.14
Ĩ	3,00,000.00	M INR/a	6.000		6.00	0.00	6.00	1.71
LABOR COST		M INR/a	24.960		24.960	0.000	24.960	7.13
Manning / unit (2 shifts) Oper.Labor Repair Labor (2 shifts) Group Repair.Labor		M INR/a Group Hrs/a M INR/a	16 19.200 16 5.760					
CAPITAL & OPERATING COST	FOR HAC SYSTEM	MINR / a>	440 74	8	TOTAL C	OST	Rs/Te	125.93
ne en server en en liver hourie de la server en la server En la server en la s	andal INSTALL PLANE		440.1 <u>81K-Bag</u>	2	OPERATIN	G COST	Rs/Te	104.50

		(HAC)	(CONVEYOR SYSTEM)	DIFFERENCE	NET SAVINGS	PRODUCTION (MTPA)	RATE FOR
YEAR	CAPITAL INVESTMENT (MINR) FOR ALT - I	OPERATING COST (Rs/Te)	OPERATING COST (Rs/Te)	COST/TE (INR)	MINR	3.50	10%
0 year	-500.00		2 12		ð		
1st	206.28	45.57	104.50	58.94	206.28		
2nd	206.28	45.57	104.50	58.94	206.28		
3rd	206.28	45.57	104.50	58.94	206.28		
4th	206.28	45.57	104.50	58.94	206.28		
5th	206.28	45.57	104.50	58.94	206.28		
6th	206.28	45.57	104.50	58.94	206.28		
7th	206.28	45.57	104.50	58.94	206.28		
8th	206.28	45.57	104.50	58.94	206.28		
9th	206.28	45.57	104.50	58.94	206.28		
10th	206.28	45.57	104.50	58.94	206.28		
NPV	1187.97						
	ALT I (HAC SYSTEM)						
	DISCOUNT RATE	10%	1 500 0	118	7 97		
	NPV (MINR)	1187 97	1,500.00	110			
1	INVESTMENT (MINR)	500.00					
	IRR	39%	≝ ^{1,000.0}	D -	500.00		
IOTE: IRR 8	& NPV HAVE BEEN SHOW	N FOR ONLY 10 YEARS	E E E E E E E E E E E E E E E E E E E			2004	
			500.0	10%		39%	
			0.0				
			DISC	. RATE(%) NPV	INVESTM	ENT IRR	

HIGH ANGLE CONVEYOR FOR SILO LOADING IN CHP

DSI HIGH ANGLE CONVEYOR DIRECTLY LOADING INTO SILO

DSI HIGH ANGLE CONVEYOR CAN DIRECTLY DISHARGE COAL, MINERALS, GRAINS INTO SILOS. THE SYSTEM SHALL BE MORE ECONOMIC THAN FEEDING BY CONVENTIONAL CONVEYOR, SINCE, THIS WILL SAVE LAND, LONG CONVEYOR GANTRY, STRUCTURAL STEEL. CONSTRUCTION TIME SHALL BE CONSIDERABLY LESS. LIFE OF DSI HIGH ANGLE CONVEYOR SHALL BE MORE THAN 20 YEARS WITH VERY LOW DEPRECIATION, MAINTENANE, OPERATING COST

LAYOUT OF A CHP FOR OPENCAST PROJECT WITH CONVENTIONAL CONVEYOR

LAYOUT OF CHP MODIFIED WITH DSI SNAKE HIGH ANGLE CONVEYOR

MODIFIED LAYOUT WITH DSI SNAKE HIGH ANGLE CONVEYOR SYSTEM – SAVINGS IN SPACE OF CHP

TYPICAL LAYOUT OF SILO LOADING CONVEYOR IN CHP DESIGNED BY CMPDI

CROSS-SECTIONAL ELEVATION OF SILO LOADING CONVEYOR

REQUIREMENT OF LAND FOR LOADING OF SILO WITH CONVENTIONAL CONVEYOR

HIGH ANGLE CONVEYOR FEEDING 54 M HIGH SILO @ 2000 TPH (BLACK HILL POWER PLANT, GILLETTE, WYOMING, USA

SILO LOADING BY SANDWICH BELT HIGH-ANGLE CONVEYORS (Cost and power shall be less with minimum **Requirement of** land)

HIGH ANGLE CONVEYOR FEEDING 54 M HIGH SILO @ 2000 TPH (BLACK HILL POWER PLANT, GILLETTE, WYOMING, USA

THE PARAMETERS OF OF SILO LOADING CONVEYOR IS SIMILAR TO DESIGN OF CMPDI

Sandwic	h Conveyor
	tor
Coal Mine,	Western USA
Material	- Coal
- Density	- 0.88 t/cu-m (55 PCF)
- Size	- 51 mm (2") minus
Conveying Rate	- 1949 t/h (2150 STPH)
Conveying Angle	- 57 degrees
Belt Width	- 1829 mm (72")
Belt Speed	- 3.81 m/s (750 FPM)
Lift	- 54,200 mm (178')
Length	- 90,800 mm (298')
Drives	
- Top Belt	- 186 kW (250 HP)
- Bottom Belt	- 298 kW (400 HP)

DSI SNAKE HIGH ANGLE CONVEYOR TO LOAD CONCRETE SILO WITH RLS SYSTEM IN CHP

HEIGHT OF SILO IS MORE THAN CMPDI DESIGN

COMPARISON OF INVESTMENT INDEX FOR DSI SNAKE HIGH ANGLE & CONVENTIONAL CONVEYOR

COST COMPARISON WITH CONVENTIONAL CONVEYOR

<u>Conventional 15° slope conveyor proves least costly when elevating to the</u> <u>lowest silo of a 17.8 meter height. However, the cost of the conventional</u> <u>conveyor system increases exponentially with height. Beyond approximately 33</u> <u>meters of lift it becomes the most expensive solution.</u>

<u>At 76 meters of lift its cost exceeds the sandwich belt solutions by a range of 60% to 88%.</u> On the other hand, the variation in investment cost for the sandwich belt solutions is approximately linear with silo height and quite modest with regard to each other. At the highest silo, the vertical sandwich belt system has the lowest investment index at 0.51 compared to 0.56 (10% higher) for the 60° slope and 0.60 (18% higher) for the 45° slope.

It can be seen that the investments increase linearly with height. The vertical sandwich belt conveyors are more economic than conventional conveyor owing to the great difference in <u>structural steel requirements</u>. The steel in this case includes all truss spans, bents, terminal framing, covers, access walkways and stairways, chutes, skirts etc.

Additional savings in cost shall be associated with the displaced projected area, if real estate values are considered.

In case of space restrictions in the plant area, it may not be possible to go for conventional conveyor and high angle conveyor shall be the only solution in such cases.

COMPARISON OF STRUCTURAL STEEL REQUIREMENT BETWEEN DSI SNAKE & CONVENTIONAL CONVEYOR

	Conv. C	1 onveyor, 1	5° Slope	DSI S	2 Snake, 45° S	Slope	DSI S	3 Snake, 60° S	ilope	DSI S	4 Snake, 90° S	Slope
	At gr. floor area [m²]	Spatial vol. [m³]	Upper surf. area [m²]									
A. Lift to 17.8 m silo	400	3547	1815	100	892	631	88	787	538	85	756	499
B. Lift to 29.6 m silo	769	10361	4324	145	2155	1418	115	1709	1088	86	1275	802
C. Lift to 41.4 m silo	1241	22215	7921	192	3999	2541	145	3027	1858	89	1861	1145
D. Lift to 57.2 m silo	2023	47747	14360	667	15210	4601	183	5276	3151	94	2707	1639
E. Lift to 73 m silo	2976	86717	22636	959	27135	7115	221	8075	4741	97	3538	2125

COMPARISON OF MOTOR POWER

	Conv. conveyor 15° slope	DSI Snake 45° slope	DSI Snake 60° slope	DSI Snake 90° slope
Material:		Co	pal	
Density		0.88	t/m ³	
Size		150 m	m max	
Conveying rate		800	t/h	
Conveying angle	15°	45°	60°	90°
Belt width	900 m	1000 mm	1200 mm	1400 mm
Belt speed	(habenizae	3.4	m/s	100000000
A. Lift to 17.8 m silo		20.	8 m	
Length	81.3 m	40.1 m	37.7 m	37.1 m
Selected Power	75 kW	90 kW	90 kW	90 kW
B. Lift to 29.6 m silo		32.	6 m	
Length	127.0 m	57.3 m	51.6 m	49.6 m
Selected Power	110 kW	110 kW	110 kW	130 kW
C. Lift to 41.4 m silo		44.	4 m	
Length	172.7 m	74.6 m	66.0 m	61.9 m
Selected Power	132 kW	150 kW	150 kW	150 kW
D. Lift to 57.2 m silo		60.	2 m	
Length	233.7 m	97.8 m	84.4 m LES	S 78.3 m
Selected Power	200 kW	180 kW	180 kW	180 kW
E. Lift to 73 m silo		76	m	
Length	294.7 m	SK Bag	103.5 m	94.7 m
Selected Power	200 kW	220 kW	220 kW	220 kW

LUMP-SIZE VIS-A-VIS WIDTH OF DSI SANDWICH CONVEYOR

HAC LUMP SIZE & WIDTH CHART

HAC BA	SIC LUMP SIZE O	CHART (Metric)
A	pproximate Maximum	Lump Size
Belt Width mm	Predominantly Lumpy Material	Occasional Lumps < 10 %
	mm	mm
600	68	89
800	91	119
1000	114	148
1200	137	178
1400	160	207
1600	182	237
1800	205	267
2000	228	296
2200	251	326
2400	274	356
2600	296	385
2800	319	415
3000	342	445
3200	365	474

HAC BASIC LUMP SIZE CHART (Imperial)

1	Approximate Maximun	n Lump Size
Belt Width Inches	Predominantly Lumpy Material	Occasional Lumps < 10 %
	Inches	Inches
24	2.74	3.56
30	3.42	4.45
36	4.10	5.34
42	4.79	6.22
48	5.47	7.11
54	6.16	8.00
60	6.84	8.89
66	7.52	9.78
72	8.21	10.67
78	8.89	11.56
84	9.58	12.45
90	10.26	13.34
96	10.94	14.23
102	11.63	15.12
108	12.31	16.00
114	13.00	16.90
120	13.68	17.78

WHAT WILL BE THE MAXIMUM LUMP SIZE FOR HIGH ANGLE CONVEYOR

Recomm	nended Maximum Lum	p Size:		10.00			
Predomi	nantly Lumpy Materia	1 (> 10%)	1/9	0.1140	x Be	It Width
Occassio	onaly Lumpy Material	< 10%)		1/7	0.1425	x Be	It Width
1	Material/	D14/	Recc Ma	ax Lump	Design		
DSSBI	Des Rate	BVV	>10%	<10%	Lump	Ma	x Lump /
	t/h	mm	mm	mm	mm	Ве	at wath
DS 001	Var / 2700	1524	174	217	254	0	0.1667
DS 002	Coal / 2000	1524	174	217	154	0	0.1010
DS 003	Cu Ore / 4000	2000	228	285	250	0	0.1250
DS 004	Coal / 2903	1829	209	261	154	0	0.0842
DS 005	Muck / 272	914	104	130	154	0	0.1685
DS 011	Coal / 1089	1372	156	196	203	0	0.1480
DS 012	Refuse / 454	914	104	130	135	0	0.1477
DS 022	Var / 715	1219	139	174	100	0	0.0820
DS 023	Coal / 1814	1829	209	261	102		0.0558
DS 024	Gyp Rock / 363	1067	122	152	152	0	0.1425
DS 026	Coal / 1361	1524	174	217	203	0	0.1332
DS 027	Coal / 272	1219	139	174	203	0	0.1665
DS 030	COal / 1361	1524	1/4	21/	228	0	0.1496
DS 036	Gold Ore / 689	1219	139	174	250	0	0.2051
DS 037	Muck / 1266	1372	156	196	152	0	0.1108
DS 038	RDF / 45.3	1372	156	196	203	0	0.1480
DS 043	Coal / 136	1067	122	152	152	0	0.1425
DS 051	Pet Coke / 635	1372	156	196	152	0	0.1108
DS 065	Var / 3993	2134	243	304	305	0	0.1429
DS 077	Var / 4264	2134	243	304	152		0.0712
DS 078	Bott Ash / 82	762	87	109	102	0	0.1339
DS 079	Var/100	762	87	109	100	0	0.1312
DS 089	Peb Ore / 102	762	87	109	60	0	0.0787
DS 093	Var / 188	914	104	130	75	0	0.0821
DS 101	Biomass / 54.4	1067	122	152	102	0	0.0956
UHAC	Waste Rock / 8000	2600	296	371	350	0	0.1346

able 7: Various sandwich beit high angle conveyor installations with design kimp size against the lump size ontena. S.K.Bag

WHAT WILL BE THE MAXIMUM LUMP SIZE FOR HIGH ANGLE CONVEYOR

MINE OPTIMISATION PROGRAM COST CALCULATIONS AND ECONOMIC COMPARISON BETWEEN DUMPER TRANSPORT AND HIGH ANGLE CONVEYOR FOR A 10 MTPA PROJECT AND 100 M DEPTH

PROGRAM DEVELOPED BY S.K.BAG

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements for 100 m depth

COMPARISO	ON OF TRANSPORT COST BY DSI SNAKE HIGH ANGLE CON	VEYOR, IPCC							
AND DUMPE	ER TRANSPORT SYSTEM FROM PIT BOTTOM IN OPENCAST	MINE							
SUMMARISE	ED COMPARATIVE STATEMENT FOR SYSTEM - I,II & III				3				
System - I:	In-pit crusher, DSI Snake HAC from pit bottom to surface a	nd dumper shu	ttle at coal fac	e					T
System - II:	In-pit crusher, conveyor from in-pit crusher to surface chp	and dumper sh	uttle at coal fa	ace					
	to in-pit crusher								
System - III:	Dumper transport from coal face to surface and crushing o	f coal at surfac	e						
IN-PUT DAT	A TABLE:								_
1. Total ann	ual production (MTe)		10.00	9. Annual inte	erest rate (%)	120	10.00%		_
2. Capacity	of the system (TPH)		1,683.00	10. Annual es	scalation rate (%)	4.00%		-
3. Annual op	perating hours (Hrs)		5,940.00	11. Life of in-	pit crusher		18		_
4. Lead dista	ance of dumper (one way) from coal face			12. Life of co	nveyor system (years)	13	_	_
to surface	e chp for System II (kM)		1.52	13. Life od D	SI HAC system (years)	16		_
5. Lead dista	ance of dumper (one way)			14. Life of du	mper (years)		10		-
from coa	I face to in-pit crushing station for System I (kM)		1.00	15. Crushing	cost at surface	(Rs/Te)	45.00		-
6.Depth of m	nine		100.00	16.E. Unit co	st per unit		7.00		-
7. Dumper c	apacity (Te)		100.00	17. Rate of pr	ogess of mine f	ace	2.50%		-
7. Length of	IPC conveyor (meter)		1,520.00	18. Annual di	scount rate		10%		_
8.Length of	DSI Snake HAC (meter)		189.70	19. Diesel pri	ce (Rs/Lit)		92.00		_
	INVESTMENT (MIND) & SYSTEM COST (DS/TE)	Fig	uree are in 'M	IND'					+
									_
SI. No.	Items	No. of Dumpers for System I,II & III	System - II	System - III	System - I				
1. In-pit crus	sher, HAC, Conv, Dumpers (System I & II)	8. 			2				T
a)	Investment for HAC & IPC (MINR)		456.00		284.55				
b)	Investment for in-pit crusher (MINR)		200.00		200.00				
c)	No. of Dumpers for System I & II	5	225.00		225.00				
	Total capital investment for System I & II		881.00	1	709.55				
2. Dumper to	ransport & Surface chp (System III)								
a)	No. of Dumpers for System III	8							
b)	Total capital investment for dumpers (System II)			360.00)				
3	Annual system cost for System I (Rs/Te)		48.72		42.60				
4	Annual system cost for System II (Rs/Te)			88.38	3				
5	Break-up of cost for System - I (Rs/Te)								
i)	In-pit crusher, HAC, IPC (Rs/te) - System I & System II		21.61		15.49				
ii)	Dumper shuttle cost (Rs/te) - System I		27.11		27.11				
				1				_	1
									+
							_		+
		-					-		+
		S.K.Bag						160	

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements – For HAC system

Total production (Million Te) Production rate (t/h) Annual operating hours 2000 mm width / length (meter) Price of conv. System (Rs' meter) Dumper cost In-pit crusher (Capacity - t/h) Dumper hAC + Bench Conveyor Dumper shuttle In-pit Crusher Economic life MINR /a 10.0 1,683.0 5,940.0 189.70 15,00,000.00 Dumper lead (km) 1683.00	
10.0 1,683.0 5,940.0 189.70 15,00,000.00 Dumper lead (km) 1683.00 Image: Constraint of the c	<u>Rs / te</u>
No.of linesunits > 1 1.0 1 ECONOMICLIFE [YEARS]>IPC/HAC/Dumper 18 16 INVESTMENT M INR 284.55 No. of dumpers 5 200.00 284.6 200.0 284.39 60.7 rEARLY CAPITAL COST M INR/a 36.37 24.39 36.37 24.39 60.7 Length m S. Weight t ex factory erection transport M INR/a 36.37 24.39 36.37 24.39 60.7 Difference M INR/a 36.37 24.39 36.37 24.39 60.7 Price of one in-pit crushing system (MINR) 200.00 Price of one in-pit crushing system (MINR) 200.00 24.39 60.7 Elec. Unit cost (Rs) 7.00 Elec. Unit cost (Rs) 7.00 57.0 Enterger COST M INR/a 35.34 0.00 21.70 57.0	10.0%
INVESTMENT M INR 284.55 No. of dumpers 5 200.00 284.6 200.0 484. rEARLY CAPITAL COST M INR/a 36.37 24.39 36.37 24.39 60.7 Length m S. Weight t ex factory erection transport M INR/a 36.37 24.39 36.37 24.39 60.7 Elec. Unit cost (Rs) 7.00	10
reaction transport MINR/a 36.37 24.39 36.37 24.39 60.7 Length m S. Weight t ex factory Price of one in-pit crushing system (MINR) 60.7 erection transport 200.00 200.00 60.7 Elec. Unit cost (Rs) 7.00 7.00 7.00 ENERGY COST M INR/a 35.34 0.00 21.70 Intelled Brance 9.00 9.00 9.00 9.00	6
Length m S. Weight t Color Color Color Length m S. Weight t Price of one in-pit Crushing system (MINR) 200.00 transport Elec. Unit cost (Rs) 7.00 ENERGY COST M INR/a 35.34 0.00 21.705 35.34 0.00 21.70	6 6
Elec. Unit cost (Rs) 7.00 ENERGY COST M INR/a 35.34 ENERGY COST 100 ENERGY COST 57.0 ENERGY COST 5	
Installed Power KW 1,000 900	5 5.
av.Load factor 85% 58%	6 2.
Spares / 1000h % of Inv 0.90% 0.10% 1.188 15.21 0.00 1.19 16.4 Wearparts/1000h % of Inv 0.30% 0.10% 1.188 15.21 0.00 1.19 16.4 Wearparts/1000h % of Inv 0.30% 0.10% 1.188 5.07 0.00 1.19 6.2	0 1. 6 0.
5,00,000.0 1.2 720 720 720 144	0 1
	U 1.
Der.Labor MINR/a 3.60 3.60 epair.Labor Group 6 6	
Sroup Hrs/a	
Jackson Jackson Jackson Oral Conveyor cost + IPC cost MINR / a> 99,200 55,67 TOTAL FOR HAC + IPCC > 154.8	6 15.
Dumper transportation cost for System MINR /a> 271.11 TOTAL(for dumper shuttle) >	27.
PC, Conveyor & Dumper shuttle in-pit System I Total for IPC, Conveyor & Dumper shuttle >	42.
Width (mm)Total length (m)Lift (m)TPHBelt speed (M/sec)Conveying angle in degreesSin value of conveying angleEstimated value (MINR)Exchange rateCost/m (INR)Drive power (kW)	
2000.00 189.70 100.00 1683.00 4.20 35.00 0.61 284.55 74.00 1500000.00 2 X 500	
	10

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements for 100 m depth for HAC system

BREAKDOWN OF COST Rs/te

SYSTEM I HAC, IPC and Dumper shuttle Cost

Capital Cost	6.08					6.08	14.3%
Labor Cost		1.44				1.44	3.4%
Energy			5.70			5.70	13.4%
Spare Parts	9		89	2.27	- 20	2.27	5.3%
Dumper cost	s		S		27.11	27.11	63.6%
TOTAL COST	6.08	1.44	5.70	2.27	27.11	42.60	100.0%

SYSTEM I TOTAL COST 42.60 Rs/te

S.K.Bag

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements – For DUMPER system

DATA TABLE	SYSTEM III	Full dumper transport												
	Million Te/Annum	Million Cu.m/Annum	Sp.gravity (te/cu.m)	No. of Dumpers/Shovel	No. of Dumpers/Shovel	Annual production of shovel (Million cu.m)	Dumpers	Dumpers				Stripping ratio	4	
ANNUAL PRODUCTION	10.0	9.09	1.1	For System II	For System I	2.00	SYSTEM II (without in-pit crusher)	SYSTEM I (with in-pit crusher)	Interest rate	Discount rate	Escalation rate	OB Density	2.6	Te/Cu.m
1,683	t∕hr	5,940	EFEECTIVE ANNUAL HOURS	8	5		Dumper lead distance (kM)	Dumper lead distance	10.0%	10.0%	4.0%	Density of coal	1.5	Te/Cu.m
Shovel capacity (CU.m)	Dumper capacity (Te)	Dumper lead distant	ce (kM)				1.52	1			Life of dumpers	Annual production of OB	104	Million Te
12.50	100	Total No.of dump	bers				8	5			10	No. of working days	330	
INVESTMENT		FOR DUMPERS (MI	NR)				360.00	225.00	4					
	A	NNUAL CAP.COST FOR DUMPERS	M INR/a				58.59	36.62						
		Capital cost of one dumper	MINR				45.00	45.00						
Depreciation			M INR/a				36.00	22.50						
ENERGY (DIESEL &	7.00	92.00												
LUBRICANT)			M INR/a				337.59	211.00						
Installed Power		_	BHP				990	990						
av.Load factor														
	5		BHP											
						-								
PARTS (R & I	M STORES)		M INR/a				14.40	9.00						
LABOR	-		M INR/a				23.20	14.50						
	500000													
Wanning/ unit (CIL)	12	22					29	18						
Oper.Labor	1.4	M INR/a					14.40	9.00						
Repair.Labor							18	11						
		M INR/a					8.80	5.50						
INDIRECT COSTS		M INR/a												
Administration O/H (2	% of Capital cost)	in the va				0.00%	0.00	0.00						
Miscellaneous Expen	ises - 2.5% of Wage	cost-'LAB'				0.00%	0.00	0.00						
	- 2% of HEMM (Cap	pital cost)				0.00%	0.00	0.00						
Total working cost	M INR/a			-			375.19	234.50						
Working capital for 4 r	nonths		MINR											
Interest on working ca	pital for 4 months (2	MINR				54520000	2021-576						
TOTAL DUMPER C	UST/ANNUM		M INR/a			L	433.78	271.11						

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements – Table for cash flow for 20 years

CALCULATION OF CASH FLOW FOR SYSTEM	& II WITH THE	ASSUMPT	ION OF IN	VESTME	NT IN '0' Y	YEAR												1
10.00 MTPA (Annu	al production)	TABLE FOR	CASH FLO	W (SYSTEN	<u>1 I, II, III)</u>	DEPTH OF MINE	100.00	M										
All Costs are in Mio INK Year DISCOUNT RATE 10% ESCALATION RATE 4%	-1 110% 96%	1 100%	2 91%	3 83%	4 75%	5 68%	6 62%	7 56%	8 51%	9 47% 137%	10 42%	11 39%	12 35%	13 32%	14 29%	15 26%	16 24%	17 22%
combined	106%	100%	95%	89%	85%	80%	76%	71%	68%	64%	60%	57%	54%	51%	48%	46%	43%	41%
Cost increased by distance due to progess	2.5%	100%	103%	105%	108%	110%	113%	115%	118%	120%	123%	125%	128%	130%	133%	135%	138%	140%
IPC, DSI HAC, Dumper shuttle - System I	MINR	Net Cost - n	ot discounte	ed and esca	lated													
Investment for IPC,DSI HAC & general overhaul	484.55					a - 5	· · · · · · · · · · · · · · · · · · ·				105.3	51	51	70		284.55	70	
Investment & replacement cost of Dumper	225.00			i							225.0			0		3	6	
Dumper haulage cost (fixed)		234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5	234.5
ENERGY COST		57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.05	57.0
SPARES COST		22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.66	22.6
LABOR COST		14.40	14.40	14.40	14.40	0 14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.4
TOTAL COST		94.11	94.11	94.11	94.11	94.11	84.11	94.11	94.11	94.11	94.11	94.11	94.11	94.11	94.11	94.11	94.11	94.
IPC, Conveyor, Dumper shuttle - System II	MINR	Net Cost - n	ot discount	ed and esca	lated	.							4					
Investment for IPC, Conv & general overhaul	656.0	-									168.7			456.0				
Investment & replacement cost of Dumper	225.0	234.5	234.5	234.5	234 5	234 5	234 5	234.5	234.5	234.5	225.0	234 5	234 5	234 5	234.5	234.5	234 5	234 5
ENERGY COST (INVER)		78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.25	78.2
SPARES COST		34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.88	34.8
LABOR COST		14.40	14.40	14.40	14.40) 14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.40	14.
TOTAL COST		127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.53	127.
Dumper & crushing cost at surface - System III	MINR	Net Cost - n	ot discounte	ed and esca	lated													
Investment & Replacement cost for dumpers	360.00										360.00		470.07					
Dumper haulage cost by distance (variable)		3/5.19	384.57	393.95	403.33	412./1	422.09	431.47	440.85	450.23	459.61	468.99	4/8.3/	487.75	497.13	506.51	515.89	525.27
PAR		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
LAB	N (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CHP COST (Rs/te) 45.00		450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0	450.0
Year	-1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
discounted & escalated :	INVESTMENT																	
TOTAL Owner Cast PVP L	709 55	328 60	310.68	293 73	277 71	262.56	248 24	234 70	221 90	209.80	397 72	187 53	177 30	167 63	158.49	279.60	141 67	133 (
TOTAL Open.Cost SYS II	881.00	362.03	342.28	323.61	305.96	289.27	273.49	258.58	244.47	231.14	456.19	206.61	195.34	417.31	174.61	165.09	156.08	147.5
TOTAL Oper.Cost SYS III	360.00	825.19	789.05	754.40	721.17	689.33	658.82	629.58	601.58	574.75	766.37	524.47	500.92	478.38	456.81	436.17	416.43	397.
<u>cumulated</u>																		
TOTAL cashflow SYS I	709.55	1038.16	1348.83	1642.57	1920.28	2182.84	2431.08	2665.78	2887.68	3097.48	3495.20	3682.73	3860.04	4027.67	4186.16	4465.76	4607.43	4741.3
TOTAL cashflow SYS II	881.00	1243.03	1585.31	1908.92	2214.88	2504.16	2777.65	3036.22	3280.70	3511.83	3968.02	4174.63	4369.97	4787.28	4961.89	5126.98	5283.06	5430.0
	000.00	1100.10	101.000	AT 20.0T	0110.04				0010.10	3000.00			0000.00		2000.00	2141190		10000.0

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements – System cost/ton

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements - Cash flow curves for 3 systems for 100 m depth and 10 mtpa production

Calculation program developed by S.K.Bag based on mine optimization program of Krupp Foedertechnik, Germany with indigenous cost elements – Comparison of three systems for 10 mtpa capacity and 100m, 150m, 200m, 300m and 400m depth showing EMI and yearly gain

					Rs	/te		Yearly gain	Yearly capital cost (EMI) for HAC
Macro command	Annual produ	ction (mtpa)	Depth (m)	System I	System II	System III	Difference between System & III	MINR	MINR
CNTRL+SHFT+L	10.0	00	100	42.60	48.72	88.38	45.78	457.80	60.76
CNTRL+SHFT+M	10.0	00	150	45.04	53.49	99.22	54.18	541.81	76.45
CNTRL+SHFT+N	10.0	00	200	47.49	58.27	126.33	78.85	788.48	92.14
CNTRL+SHFT+P	10.0	00	300	52.38	67.81	153.45	101.07	1010.70	123.53
CNTRL+SHFT+R	10.0	00	400	57.26	77.35	175.13	117.87	1178.70	154.91
		<u>S</u>	YSTEM COST	<u>rs (rs/te</u>)					
200.00 180.00 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00	88.38 42.60 48.72	<u>99.22</u> 45.04	<u>YSTEM COST</u> 2 58.2 47.49	126.33	67.81	175.13 77.35 57.26	System I System II System III		

THE ISSUE

The Ministry of Coal has set a target to generate 1.0 billion tonnes (BT) in FY25 from current annual coal production of around 710 MT. A key objective of the nation is the development of rapid, affordable, and environmentally responsible coal transportation. In order to <u>eliminate road</u> <u>transportation of coal in mines</u>, the Ministry of Coal has taken action to improve the mechanised coal transportation and loading systems under the "First Mile Connectivity" programs.

Issue is whether dumper transport shall continue within pit to cope with target production of 1.0 BT. Production shall have to be increased mostly from potential operating mines and deeper horizons. Owning and operating cost for dumper system shall be very high. Present global warming is a challenge for the whole World.

Which coal transportation system in opencast mine shall be more productive, rapid, economic and environmentally responsible? Dumper, In-pit Conveyor (IPC) or High Angle Conveying system (an advanced in-pit conveying system with steep angle and through side-wall of mine). Obviously DSI high angle conveyor system shall be the most economic system (calculation presented). <u>Dumper transport shall contribute to global warming, whereas DSI high angle conveyor transport shall be the mine.</u>

CMPDI in their case study for application of steep angled conveyor in deep opencast coal mine has shown savings in cost of production by Rs 78/ per ton (for 15 million ton per annum annual savings shall be Rs 117.00 crores) and additional capital expenditure by about Rs 25.00 crores for reducing 60 ton dumpers by 87 nos.

High Angle Conveyor can be easily dovetailed in operating mine, while continuing with dumper transport.

- 1. High Angle Conveyor can be laid in a suitable bench along the sidewall, where dumpers shall unload onto the tail end of the high angle conveyor through shiftable modular unloading arrangement, while continuing existing dumper transport to operate through the haul road. There will be no issue of its route interference with haul road. System may be similar to Kotre Basantpur, Gare Palma II, Siarmal opencast projects.
- 2. There will be no chance of failure of high angle conveyor due to snapping of belt, since, high angle conveyor is a booster conveyor with 40% less tension than conventional conveyor and there will be two belts running together instead of one in conventional conveyor system.
- 3. There will be no necessity to widen the haul road unlike for installing separate in-pit conveyor in case of IPCC.
- 4. No chance of accident from dumper.
- 5. There will be only one take out conveyor unlike nos. of in-pit conveyors with IPCC in the mine.
- 6. Length of high angle conveyor shall be much shorter (near to mine depth) whereas, length in-pit conveyors in IPCC shall be equal to dumper route.
- 7. No alignment and levelling problem.
- 8. High Angle Conveyor allows 120 m un-supported length and shall need support beyond this length. Very less support and civil work shall be required.
- 9. Much easier to install and operate.
- 10. Requires much less spares and less manpower than in-pit conveyor..

11. Life of High Angle Conveyor shall be around 20 years.

12. Coal shall be transported from pit bottom concealed between two belts and as such transport of coal shall be green transport system.

13. Cost shall increase marginally with increase of depth and whereas cost shall increase exponentially for dumper and in-pit conveyor system with increase of depth (see the calculation).

14. Separate provision of drainage shall not be required.

15. More space shall be available for internal dump.

16. System availability shall be higher than in-pit conveyor system due to only one high angle conveyor system.

18. Much less lighting cost than in-pit conveyors along the conveyor route.

19. Less cost for fire protection.

20. Shall be almost pollution free out of dust and exhaust fumes and sound from dumpers.

21. Coal shall reach surface much quicker than dumper and in-pit conveyor.

21. The system shall be very safe & free from operational hazards of dumpers in the mine. (**see the video in next slide**)

22. Dos Santos International, USA shall be committed to give all the supports and training and also do erection and commissioning of the system.

23. Dos Santos International, USA shall be committed to manufacture the high angle conveyor in India with indigenous parts and accessories. This shall reduce cost of DSI system by around 40%, on a/c of shipment, CFI and customs duty.

MAULES CREEK MINE TRUCK COLLISION

https://youtu.be/zkFAFZGmVkM

Learning from investigations: Maules Creek Mine truck collision. On 21 April 2018, a worker suffered serious injuries when the 100 tonne service truck he was driving collided with a 500-tonne haul truck at the mine. The worker in the service truck suffered back, shoulder and wrist injuries. The service truck suffered substantial damage. The operator, a labourhire worker, aged 43, received serious injuries in the collision. The injured worker was transported by helicopter to hospital where he underwent medical treatment. The Hitachi haul truck is one of the largest rigid-frame trucks used in NSW mines with a payload of 296 tonnes and gross vehicle weight of 500 tonnes.

A worker suffered serious injuries when the service truck he was driving and a large haul truck collided. The injured worker was transported to hospital for treatment. The NSW Resources Regulator has commenced an investigation into the incident.

Investigation Information release

NSW RESOURCES REGULATOR

Serious injury

Incident date: 21 April 2018 Event: Serious injury at open cut coal mine Location: Maules Creek Mine, Maules Creek NSW

Overview

A worker suffered serious injuries when the service truck he was driving and a large haul truck collided. The injured worker was transported to hospital for treatment. The NSW Resources Regulator has commenced an investigation into the incident.

Photograph 1: Damaged front end of service truck.

The incident

At about 7.58 am on 21 April 2018, a Caterpillar 773 service truck and a fully-laden Hitachi EH5000 haul truck collided at a major fourway intersection on the mine haul road.

The service truck suffered substantial damage. The operator, a labour-hire worker, aged 43, received serious injuries in the collision. The injured worker was transported by helicopter to hospital where he underwent medical treatment.

The Hitachi haul truck is one of the largest rigid-frame trucks used in NSW mines with a payload of 296 tonnes and gross vehicle weight of 500 tonnes.

The Caterpillar service truck is used to transport diesel and refuel mobile and fixed plant in-pit. The service truck has a gross vehicle weight of 103 tonnes.

Photograph 2: Four-way haul road intersection showing trucks involved in the collision.

GLOBAL REFERENCE PROJECTS OF DSI HIGH ANGLE CONVEYOR

TA	「ABLE 1. High Angle Conveyor - HAC [®] Installations - Continental Conveyor & Equipment Company											
	COMPANY	Y							DRIVES (kW)		IN	
	LOCATION	MATERIAL	(t/h)	ANGLE (°)	HEIGHT (m)	(m)	WIDTH (mm)	SPEED (m/s)	ТОР	воттом	OPERATION	
1.	Demo unit / Winfield, AL, USA	Various	То 2903	30 to 60	7.9 to 19.5	35.0	1524	0 to 6.1	75	112	1983	
2.	Triton Coal Co. / Gillette, WY, USA	Coal	2540	60	32.9	56.7	1524	5.33	149	224	1984	
3.	Majdanpek Mine / Yugoslavia	Copper ore	4000	35.5	93.5	173.7	2000	2.67	450	900	1992	
4.	Coal Company / Western USA	Coal	2903	35	29	61.9	1829	4.57	149	224	1987	
5.	Granite Constr. Co. / LA, CA, USA	Excavated earth	272	90	31	39.9	914	1.6	22.4	22.4	1988	
6.	Waste Treatment Co. / NY, USA	Sludge	.272	90	3.66	8.6	610	0.3	0.0	2.2	1989	
7.	Boise Cascade / Wallula, WA, USA	Wood chips	173	53	32.6	49.3	1219	2.03	22.4	22.4	1989	
8.	Coal Prep Plant / Eastern USA	Raw coal	1089	49	21₈9 K.Bag	40.2	1372	2.79	56	56	11,990	

9.	Beth Energy Mines / Van, WV, USA	Clean coal	726	90	76.2	90.2	1372	2.79	112	112	<mark>1991</mark>
<mark>1</mark> 0.	Boise Cascade / Steilacoom, WA, USA	Wood chips	65.3	90	15.5	31.4	914	2.0 <mark>3</mark>	7.5	7.5	1991
11.	Valley Camp of Utah / Helper, UT,USA	Raw coal	1089	65	<mark>30</mark> .7	44.2	1372	3.56	93.2	93.2	1990
12.	Island Creek Corp. / Oakwood, VA, USA	Coal refuse	454	To 41	17 <mark>4.</mark> 8	454.2	914	2.34	186	<mark>186</mark>	19 <mark>9</mark> 2
13.	Steel Cement Ltd. / Australia	Gypsum, slag	50	90	16.2	37.8	600	1.67	7.5	7.5	1991
14.	Kimberly Clark / Canada	Wood chips	229	53	22.9	40.5	1219	2.03	18 <mark>.</mark> 6	<mark>18.6</mark>	19 <mark>9</mark> 1
15.	Cape May County /	Compost	40.3	90	9.0	17.5	762	1.27	0.0	11.2	1991
	NJ, USA				S.K.Bag						175

16.	Cape May County / NJ, USA	Compost	40.3	90	13.0	31.8	762	1.27	0.0	11.2	1991
17.	Shipping Company / Mexico	Grain	584	90	18.9	27.4	1524	4.06	56	56	1991
18.	Shipping Company / Mexico	Grain	1361	90	22.0	181.0	1829	4.06	112	112	1993
19.	Coal Company / Eastern USA	Clean coal	544	90	16.1	69.4	1372	2.79	37.3	75	1991
20.	Shipping Company / Mexico	Grain	907	65	30.7	44.2	1372	3.73	75	75	1993
21.	Gleason- Pequiven / Venezuela	Phosphate Rock	668	-35.5	Drop 34.0	113.0	914	2.29	0	93.2	1992
22.	Cementos Veracruz / Mexico	Hot Clinker	715	35	41.3	198.9	1219	1.73	56	112	1992
23.	Midwest Conveyor / FL, USA	Coal	1814	48	14.2	57.0	1829	3.56	75	112	1992
24.	U.S. Gypsum / NY, USA	Gypsum Rock	363	90	36.6	48.5	1067	1.52	37.3	37.3	1992
25.	The Conveyor Co. / WI, USA	Sludge	9.1	90	6.5	15.6	610	1.22	0.0	/7.5	1992
26.	Mountain Coal Co. / CO, USA	Raw Coal	1361	51	22.96 K.Bag	44.2	1524	3.56	75	<mark>93.2</mark>	1 7992

27.	Mountain Coal Co. / CO, USA	Raw Coal	272	35	15.0	37.5	1219	1.27	11.2	14.9	1992
28.	Taulman Systems / Canada	Compost	81.6	90	20.0	36.3	762	1.78	11.2	11.2	1992
29.	Montague Systems / WY, USA	Coal	1950	57	59.4	90.8	1829	3.66	186	298	1993
30.	Turns Coal Co. / IL, USA	Coal	1361	90	102.0	113.0	1524	4.57	298	298	1993
31.	Sasol / South	Coal	400	90	13.3	39.3	1200	2.2	30	30	1993
	Africa										
32.	Sasol / South Africa	Coal	400	90	13.3	40.3	1200	2.2	30	30	1993
33.	Sasol / South Africa	Coal	400	90	13.3	43.4	1200	2.2	30	30	1993
34.	Sasol / South Africa	Coal	600	90	13.3	40.3	1350	2.6	45	45	1993
35.	Sasol / South Africa	Coal	600	90	13.3	40.3	1350	2.6	45	45	1993
36.	Bechtel / NV, USA	Gold Ore	689	60	28.9	58.4	1219	1.65	37.3	56	1993
37.	Perini / MA, USA	TBM Muck	1266	90	70.1	83.8	1372	3.56	186	186	1993
38.	Palm Beach Resource / FL, USA	RDF	45.3	45	23.8 S.K.Bag	40.2	1372	1.15	0	15	1993

39.	Colver Power Plant / PA, USA	Coal	260	55	28.3	60. <mark>4</mark>	762	2. <mark>2</mark> 9	22.4	22.4	1994
40.	Colver Power Plant / PA, USA	Coal	260	To 60	46.9	78.9	762	2.29	30	37.3	1994
41.	Butterley Eng. / U.K.	Various	To 50	90	9.0	11.3	500	2.5	3	3	1993

200-0020	1913 (BA)		225	2764 - 20 2764 - 20	- 101 - 10 2	7 - 100-100 - 100-100	1001 - 10		2000 P.W.
DS	Location	Material/	Ang	Elev.	Lgth	Width	Speed	Top/Bot	Year
#		Rate (t/h)	(°)	(m)	(m)	(mm)	(m/s)	(kW)	
098	Refinery/	Pet Coke/	90	21.2	32.3	1400	3.5	45/	2012
	Muzkiz, Spain	475	_					45	
099	Refinery/	Sulfur/	90	10.5	20.6	600	2.0	7.5/	2012
	Cartagena, Spain	40	_					7.5	
100	Copper Mine/	Filter Cake/	64	7.2	14.8	762	1.3	7.5/	2011
	Balmecera, Chile	77						7.5	
101	Pulp & Paper Mill/	Hog Fuel/	90	7.7	16.6	1067	1.52	7.5/	2012
	Maine, USA	54.4	_					7.5	
102	Cu-Au Mine/	Pebble Ore/	67	24.2	49.8	914	2.1	29.8/	2015
	BC, CN	340						29.8	
103	Pastil Plant/	Sulfur Pastils/	50.5	19.3	55.8	600	0.4	3.7/	2015
	South England	20						3.7	
104	Cement Plant/	Raw Feed/	60	20.3	61.5	1220	3.1	56/	2015
	Paraiba, Brazil	720						56	
105	Export Terminal/	Coal/	52	18.5	45.9	2438	4.32	224/	2016
	South LA, USA	3629						224	470

TABLE 1. Latest DSI Sandwich Belt High Angle Conveyor Installations since 2010

5.K.Bag

THE FUTURE LIES AHEAD

pnevels@dossantosintl.com

www.DosSantosIntl.com